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ABSTRACT

-1

Analytical and experimental data is presented validating
a finite segment cable model. The model consists of a series
of pin-connected rigid rods which may have different lengths,
diameters, and masses. The model is capable of simulating large,
three-dimensional motion of flexible cables. 1Its principal areas
of application are expected to be with the simuylation of long,

heavy, towing and hoisting cables.
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INTRODUCTION

Approximately five years ago we introduced a three-dimensional
dynamic finite segment model for cables and chains [1].* The model consists
of a series of pin-connected rods or links. The model is developed so that
arbitrary external forces may be exerted on the links. The dynamics of
the system is then determined through numerical integration of the governing
equations of motion. In this report we present data which validates ana~

lytical predictions of the model.

Figure 1. shows a schematic representation of the model. The number
of links N is arbitrary. The length, diameter, mass, and inertias of the
individual links may also be arbitrarily chosen. This model is'expected
to be effective in studying the nonlinear, three-dimensional, dynamic behavior
of long, heavy cables [1,2]. Particular application with submerged towing

cables has also been suggested [3].

The attractive features of the model are: 1) the arbitrary dimensions
and physical parameters of the links of the model; 2) the arbitrary speci-
fication of externmally applied forces; 3) the use of relative orientation
angles between the links to define the system configuration; and 4) the use
of Lagrange's form of d'Alembert’'s princinsle to develop the zoverning
equations of motion. The use of relative orientation angles is a convenience

in the specification of the systam's configuration and in the introduction of

* Numbers in brackets refer to References at the end of the report.
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flexible and/or torsional springs and dampers between the links.
Lagrange's form of d'Alembert's principle as exposited by Kane and
others [4-8], has been shown, for large systems, to possess the
advancaées of both Lagrange's equations and Newton's lawé, but without
the corresponding disadvantages. That is, the principle provides for
the automatic elimination of the "non-working' internal constraint
forces without introducing tedious differentiation or other similar

calculations.

The objective of this report is to present several sets of data
validating this cable model. This data consists of: 1) a comparison of
results obtained from this model with analogous results obtained from a
two—~dimensional multi-link pendulum model with governing equations
developed by Lagrange's equations; 2) a compérison of data from the
above models with the displacement and natural frequencies of a hanging
cable with data obtained analytically from a linear partial differential
equation model; and 3) a comparison of model data for a submerged
pendulum with experimental data recorded at the Civil Engineering Laboratory

at Port Hueneme, California.

The balance of this report is divided into four parts with the following
part summarizing the basic equations of the kinematics and dymamics of the
cable model. This is followed by the development of the two-dimensional
Lagrange multi-link pendulum model. The comparismns of the models with
each other and with analytical znd experimental data are presented in the
next part. The final part contains some concluding remarks on the signi-

ficance of the validation and on the application of the model.

oy




THE FINITE SEGMENT MODEL

Configuration

Consider again the representation of the model as shown in Figure 1.
To establish‘a geometrical accounting for this system, select one lirnk
(say the first link) as the reference link. Jext, label or number the
other links in ascending progression away from this link as shown in
Figure 1. The configuration and kinematics of each body of this system
! may then be developed relative to the reference link which, in turn, has
i

its configuration and kinematics defined relative to an inertial

reference frame R.

Consider a typical pair of adjoining links such as L, and Lk as shown

3
in Figure 2. Llet j<k, that is, let j=k-1, Then the general orientation

of Lk relative to Lj’ may be defined in terms of the relative inclination
of the dextral orthogonal unit vector sets, gji and Ty (1=1,2,3) fixed
in L, and Lk’ as shown in Figure 2. Specifically, let Lj

any given orientation relative to L

i

n and gk are then related to each other as:

S41 1

| 81 % Kyntun @

and Lk be oriented
so that gji and Dy are respectively parallel. Then Lk may be brought into
by three successive dextral rotations

o 1 1 2 ~
about axes paral.el to Terr Yoo and ) through the angles T Ao and o
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where SK is a 3x3 orthogonal transformation matrix ("shifter") defined

as [9]:

Kim ™ %45 * %km

(Regarding notation, repeated subscripts, such as m in the right side of

Equation (1) represent a sum over the range (1,2,3) of that index.)
SK may be written as the product of three orthogonal matrices as:
SK = AK BK GK (3)

where

1 0 0 ]
|
AK = 0 Cak -Sak J %)
0 Sak Cak ?
— =
C8, 0 58, i
Bk =| O 1 o | (5)
|
| -$8, 0 cs,
cv, -8, 0
£ £
Gk =| S, cy, 0o (%)
£ 24 !
0 0 1

where 3 and C represent the sine and cosine.
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These expressions allow for the transformation of components of
vectors referred to one link of the system into components referred J

to any other link of the system, and, in particular, to the inertial

reference frame R.

Since these transformation matrices play a central role throughout the

analysis, it is helpful to also have an algorithm for this derivative,

expecially the derivative of SOK, the transformation matrix between o

and 3y where the n_. are fixed in R. Specifically, SOK is

ol
SOKij =a, " gkj (7)

Hence, since the a , are fixed and therefore constant in R, the following
is obtained:

R
d(SOK,)/dt = n; -+ o /de (8)

where the superscript R indicates that the derivative is computed in R.
However, since Ekj are fixed in Lk’ their derivative may be written as
o X 0y where o is the angular velocity of Lk in R. Equation (8) mav

then be rewritten as:

d(SOKij)/dt = -e 9

¢
~
pt

. a..n «a
inn“kn~om

4(SCK)/dt = WK SIK (10}




where WK is a matrix defined as

WK = -

im 1on“%n (1)

where w are the n components of w
kn ~on PO ~k

tion symbol [9,10]. WK is simply the matrix whose dual vector [10]

and ® m is the standard permuta-

is @y - Equation (10) thus shows that the derivative may be compﬁted by

a simple matrix multiplication.

Finally, Figure 2. contains symbols not vet defined in the sequel.
Oj (3=1,...,N) is the reference point of Lj, and it is the common point
of Lj and its adjacent lower-numbered link. Gj (j=1,...,N) represents
the mass center of L,. Ej (j=1,...,N) is the position vector of Gj

J
relative to Oj’ and § relative to 0,. r

is the position vector of Ok 3 ;5

k

and Ek are thus fixed in Lj.
Kinematics

The system shown in Figure 1. will in general have 3N+3 degrees of

freedom. These may be defined in terms of generalized coordinates X

L

(j=1,...,3N+3). Xl, X2, and X3 represent the position coordinates ¢

0, in R. The succeeding triplets of coordinates represent dextral rotations

of the links relative to the respective adjacent l.ower links,

If the axial rotation of the links is neglected, the aumber of

degrees of freedom can be reduced to 2N+3. This also avoids singularities

which are occasionally encountered with large rotations as discussed ia

References (11] and [12]. ‘hen the axial rotations are neglectead,




the Sk are zero for each link and the BK become identity matrices. 1In
the following kinematic analysis, the axial rotations of the links are

neglected.

o

The angular velocity w,  of Lk in R is readily obtained from the

k
addition formula [6]:

+ o, + L. F o (12)
k

where é is the angular velocity of Lk relative to Lk—l' By using the

k

transformation properties of the shifters, ¥, may be written as:

n (13)

= S0J, (2,8 , +v _
im" k mi ~oi

“k ] a3

where Smn is Kronecker's delta symbol or the identitv tenmsor [9,10].
Hence, by repeatedly substituting from Equation (13) into Equation (12),

D1 takes the form:

where there is a sum from 1 to 2N+3 on 2 and from 1 to 3 on m. TZrom

Equation (13), it is seen that the non-zero 2 0m take one of the Iwo

Sorms:

S0J
- o (13)

‘)‘!
<im S0J__4K_,

[4/]
32

depending upon whether X, i
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The angular acceleration A of Lk in R may be obtained by differ-

entiating Equation (14). Noting that the Dn 3T constant, this becomes:

e Attt L. e,

i %™ a9t %n (16)
Y g
f where from Equation (15) the non~zero &klm take one of the two forms:
$0J
“rim T o ™ . an
) S0J _AK _, + SOJ__AK
mn n3 mn - n3

where SOJ is given by Equation (10) and where AK is obtained by differ-

entiating Equation (4).

The velocity Yj of: Gj in R may be obtained by differentiating gj’
the position vector of Gj relative to a fixed point O in R. From

Figure 1., ?j may be expressed as:

j=1

?j = (& + SOJkler + %El SOM, Syy ) Bk (18)

where, as before, there is a sum over k and U from 1 to 3. Hence,

Vj may be written in the form:

where by Equatiomns (13), (13), and (il), the non-zero vj’k are given Sv:

(20)

e 4 e




j-1
= 7 -+~ £
Y5 T MkprTyp yu1 MM or > Mo

where WJ is defined as:
2%p

= % = . = 7
WJkpz [ankq/aXIISOJqp (2=1,...,2N+3; k,p=1,2,3) (22)

Using Equation (11), WJ may be written in the form:

kpt

soJ (23)

| - v
epr T “Pras®3 253 %ep

The acceleration éj of Gj in R may be obtained by differentiating

Equation (19), leading to:

25 = Ui * V) %ok (24)

where by Equations (20) and (21), the non-zero V are given by:

i
. L - j-l L)
M
V. =Wl 1+ L 1 (25)
jik kpi'p V=1 xpl’p
T. ig
where by Equation (23) JJkpl is:
T, . : ; -
JJka ekqs(»jlsSOJqp + “jlsSOJqp) (26)
Therefora, the kinematical description of the system is defined by i

Equations (14), (16), (19), and (24), and specifically by the four block
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matrices “jlk’ lek’ Vjik' and lek. From Equations (15), (17), (21),
and (25), it is seen that each of these matrices may be computed by
vector and matrix mulciplications which are easily developed into
computer algorithms. These matrices play a central role in the develop-

ment of the equations of motion of the model.

Equations of Motion

Consider again the cable model of Figure 1. Let the externally
applied force system on each link Lk be replaced by an equivalent force
system consisting of a single force gj’ passing through Gj together with

a couple with torque M Then lagrange's form of d'Alembert's principle

g

states that the governing dynamical equations of motion for the chain

system are:
F, + F* = 0 (2 = 1,...,28+3) (27)
F, are called ''generalized active forces' and they are given by:

a V + N 2
2T Uiakfik T Yactix (28)

where there is a sum from 1 to ¥ on i and frem 1 to 3 on %, and where

v and M., are the n
ik ~0

1

, components of T, and M,. T¥% ara callad
3‘ I k ‘J -J «©

"zeneralized inertia forces" and thev are given bv:

F* + y,. M* (29)

F* = 7, LM
jikik

4

1 1
2 jex 3k
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where the indices follow the same rules as in Equation (28) and where

F§k and M;k are the N, Somponents of the inertia forces E? and inertia

torques g; given by the expressicns [6]:

.ty A

E; = -mjgj (no sum) (30)
and ;
¥§ = -Ej tY Ty ({j . gj) (no sum) (31)

where mj is the mass of Lj and Ej is the inertia dyvadic of L, relative

3
to Gj (3=1,...,N).

By substitutint Equations (16) and (24) into Equations (30) and
(31) and ultimately into Equation (27), the equations of motion may be

written in the form:

a, X =f (2=1,...,283) (32)

where there is a sum from 1 to 2N+3 on p and where a and f2 are

ra]
given by:

v +
25 T ™ok 5 T Tiknipns u

(33)

H and




£ '-(FL+mV

2 1Y Vyqetq T T

sxn®§20”§qkq

+ emk“jqnujsrdjlkrjmrqus) (34)

where there 1s a sum from 1 zo N on j, q, and 8 and a sum from 1 to

3 on the other repeated indices.

Equations (32) form a set of 2N+3 simultaneous ordinaryv, nonlinear
differential equations determining the 2N+3 generalized coordinates X,

of the cable system. Since the coefficients alp and Ez. of these

equations are algebraic functions of the physical parameters, and the

four arrays V , and &

jae Yokt Yy j

on a computer. Furthermore, once they are developed, they may also be

1K° the equations may be zenerated

solved numerically by a computer by using a standard numerical integra-~-

tion routine.

Computer Code

Numerical algorithms to evaluate the above parameters and expressiocns
have been developed and compiled into a user-oriented computer code. As
input, the code requires: the number of links; the masses; the centroidal
principal inertia matrices; the mass center positions; the connection {or
reference) point positions; the motion profile Zor those links with
specified motion; che applied forces and moments: and the initial

configuration.

The output of the code includes: the values 2f all variables and
their first derivatives; the mass center positions, velocities, and
accelerations; and the connectlon point posicions, velocities, and

accelerations.

[
R




LAGRANGE MULTI-LINK PENDULUM MCLEL

To obtain an analytical verification of the zoverninz aquations (32),
consider the two-dimensional oscillations of a multilink hanging pendulum
with a concentrated end mass as shown in Figure 3. is system has N
degrees of Zreedom which may be described by the angles 91""’9N as
shown in Figure 3. The equations of motion of this relatively simple

system can be obtained through Equations (32) or independently bv using

Lagrange's equations.

If each link has the same mass m and length 2 che kinetic energy

K of the system may be expressed as:

+ .

~ 19

2 2 2 2 .
K= @/2){V, +V. + . . .+V + QA%/12)(®] + 3
G, 76, *Gy 1

+ 301 + vy (35)

where the Gi (L = 1,...,N) are the mass centers of the links, Q is

the end puint with mass M. The veiocity of a typical mass center Gi

mav be expressed as:

A 3 - - 3 143
w, TRt ol '134) 3
where the ni (L = 1 .,.,N) ave unir vectors normal to che links as shown

in Figure 3. 3v substituring expressiosns of the Zorm 27 Zquation 34D




Figure 3.

Two=-Dimensional Mul:ilink Dendulum Model




into Equation (35) and by carrving out the scalar products, the kinetic

energy may be written in the form:

3y v 3 PN ( )
K= m2/2) T o, 33 37
g1 jup 41

where the m,, are given by the expressions:

13

mij = (1/2) [1 + 2(N-k) + Z(M/m)]cos(aj - Si) (38)

if 1#f and k is the larger of i and j

and

mij = [(N=-1) + (1/3) + M/m) ] if i=j (39

Lagrange's equations then lead to governing equations of motion of the

form (6]:

d(3K/38,)dt - 3K/38, = F (1 =1,...,N) (40)
i i 3i

where F5 is the generalized active force associated with 9i. The only
i
forces making a non-zero contributicn to F, are the weight forces.
‘i
Hdence, ¥, may be written as:
!
M

F,o= I (3

/38.) « (-mgk) + (3V_ /380 « (-Mgk) (a1)
’i j’l Qi < ~ O j ~

where & is the vertical unit vector as shown in Figure 3. and 2 is che

zravitcational constant.




By substituting Equation (37) and (41) into Equations (40), and

by carrying out the indicated operations, the equations of motion take

the form:

2

N . .
Eomyy3y TPy

+ (g/l)kij] -

(m

i=1

1]

kij are given by the expressions:

where the m,, are given in Equations (38) and (39) and where pij and

? Py = (/D[ + 2(¥-k + 20W/m]sia(s; - 9)) (43)
if 1 ¥ j and k is the larger of i and j
and
Pyy ™ 0 ifi=]j (44)
‘ and
3
! i
1 ky =0 1€ 1 % 3 (43)

and, finallv

&, = - L= (12) + Umstad, $2 4w (46) %
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MODEL VALIDATION AND COMPARISON

It is relatively easy to show - particularly if the number of links
is small ~ that the equations of motion given by Equations (32) and
(42) are the same. (This, of course, requires the conversion of the
relative orientation angles used in Equations (32) to absolute angles as
shown in Figure 3.) Hence, when Equations (32) and (42) were independently
integrated for a number of cases as described below the results were

identical.

The Hanging Chain

The small oscillations and natural frequencies of a hanging cable or
chain have been examined and studied by several writers, including
Salvadori and Schwartz ([13] and Woodward [14]. These iavestigations
involve the solution of the governing partial differential aquation

modelling the continuum of the hanging cable.

|
; For an initially straight cable inclined at an angle 90 with the
i verctical, and released from rest, the horizontal displacement v may be

axpressed approximately as [13]:

y = vix,t) = 8aOL[o.139J0<2.Aow§7i)cos 1.20v3/L ¢

—

- 0.0175 J4(5.52v%/L)cos 2.76vg/L ¢t (47

+ 0.0056830(3.65w§7i)cos 4.33v3/L ¢ ]




where x is the vertical coordinate along the cable, t is the time, L

is che total cable length, and JO is the Bessel function of order zero.

For a 15 ft. cable or chain modelled by 15, 1 fr. links, Equation
(32) was integrated for various 60 and the results were compared with
those produced by Equation (47). The comparisons of the predicted

shapes as the chaln passes the vertical are shown in Figures 4a. and 4b.

Natural Frequencies

For small oscillations, Woodward [14] has solved the governing
partial differential equation of a hanging cable with a concentrated
end mass. He has calculated and tabulated the natural frequencies for
various end-mass to cable-mass ratios. By linearizing Equation (42),
the analogous finite segment eigenvalue problem can be solved and the
results compared with those of Woodward [l14]. Table I. shows a
comparison of results for the lowest frequency for chains of 3, 10, and
100 links respectively. Table II. shows the same comparison for the
second lowest frequency. Finally, to show the convergence of the finite
segment model, Table III. presents a comparison for the £ifth frequency
for chains of 5, 10, 20, 50, and 100 links. (The numbers listad in

- —_— . -
these taoles are 2uvL/g where w is the natural ‘requency.)

M . < 7 orser -




A Comparison

+f the Minitz 3egmen: Moda: and
Model for the lLowesc ligtural Froijuen:; Jor a

ncioaun

o ~
o

Number of T.inks

Continuum
Results

Fnd-Mass/Cable-Mass Ratio

5 10 100 E
L
!
2.4077 2.405 .05 | .405
|
317 2,315 2.315 4[ 2.315
.261 2.260 260 | 260
7
174 2.173 2,173 | 2.173
t
113 7.113 2,113 | 2.113
— i
! .N67 2.067 .067 | 2.0A7
i i
‘ .030 2.030 .030 J .N30
]
.016 2.016 014 L 2.016
.008 2.008 ; 008 | 2.011
T -+
.003. 2.003 .003 | .001
i

Natural Frequencv:

Tabl




TABLE II. A Comparison of the Finite Segment Model and a Continuum
Model for the Second Lowest Natural Freguency for a Hanging
Cable.

- e g

‘ Number of Links § Continuum ‘
; s 10 100 Results (14]
|
. | 0.0 5.714 5.574 5.521 5.520
5 0.1 5.788 5.672° 5.632 5.632
2 0.2 6.067 5.963 5.929 | 5.928
2 | 0.5 6.972 6.873 6.840 6.840
; %g 1.0 8.308 8.200 8.164 8.163
ﬁ 2.0 10.485 10.354 10.311 10.311
‘ g 5.0 15.247 15.060 14.997 14.998
. 10.0 20.892 20.637 20.564 20.553
20.0 29.059 28.706 28.614 28.588
50.0 45.478 44,937 44.673 44,739
Natural Frequency 2m2vL/g




TABLE III.

End-Mass/Cable-Mass Ratio

A Comparison of the Finite-Segment Model and a2 Continuum Model

for the Fifth Natural Frequency for a Hanging Cable,.

Number of Links

. Continuum
Resulrs [14]

M/my 10 20 50 | 100
| |
0.0 | 22.632 | 16.965 | 15.584 | 15.065 | 14.968 é .93 |
0.1 | 24.392 | 19.192 | 18.028 | 17.686 | 17.636 % 17.619
0.2 | 26.089 | 21.267 | 20.119 | 19.786 | 19.738 i 19.722
0.5 | 30.719 | 26.223 | 26.931 | 24.564 | 24.512 |  26.493
1.0 | 37.291 | 32.567 | 31.014 | 30.578 | 30.515 ( 30.493
2.0 | 47.904 | 42.300 | 40.311 | 39.756 | 39.675 [ 39.648
5.0 | 70.871 | 62.869 | 59.928 | 59.112 | 58.996 |  58.951 |
10.0 | 97.861 |112.282 | 82.820 | 81.679 | 81.546 |  81.466 |
20,0 |136.722 |121.384 |115.709 | 114.146 }113.955 | 113.811
50.0 | 214.691 {190.418 | 181.655 | 179.264 il78.65& 178.511

Natural Frequency 2@5 L/z

Jr—
Y
5




Submerged Catenary Cable

An experimental verification of the finite segment model can be ob-
tained by comparison with data recorded at the U.S. Navy Civil Engineering
Laboratory at Port Hueneme, California. 1In these experiments a totally
submerged cable supported at one end, with a spherical body at the other
end was initially held in a catenary shape and then released from rest
[15,16]. The subsequent cable shape and motion were recorded. The
same experiment was simulated using the finite segment cable model and the
computer model SEADYN of Reference {15]. Table IV and Figure 5. show a
comparison of the experimental and computed results for the end-body displace-
ment. (In the analysis using Equations (32), the fluid forces were modelled

by using results of References [3] and [17].)




TABLE IV, A Comparison of the Finite Segment Model, SEADYN (15,16]
and Experimental Results for the End Displacement of a
Submerged Cable.

| Experimental SEADYN ! Finite-Segment% %I

Time Results Results Model Results i
(X,Y) (£t) (X,Y) (fr) (X,Y) (fr)

0.0 20.5, 1.25 20.5, 1.25 20.5, 1.25
2.0 20.3, 6.65 20.71, 8.86 20.52, 7.97
4.0 20.2, 15.65 21.01,16.81 21.11,15.34
6.0 20.2, 24.15 21.31,22.41 21.0, 22.21
8.0 20.5, 32.65 21.07,27.47 20.89,28.97
16.0 20.5, 40.55 20.77,32.29 20.84,35.78
12.0 20.5, 46.95 20.54,37.35 20.88,42.61
14.0 20.5, 51.15 20.24,42.12 21.0, 49.19 :
16.0 20.0, 52.85 20.24,46.81 21.05,53.25 i ;
18.0 19.5, 53.55 19.64,51.02 20.63,54.06 |
20.0 18.9, 53.95 19.17,53.07 19.89,54.49

NOTE: X is the Horizontal Coordinate of the Spherical
End=-Body and 7 is the Depth Coordinate.
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5 CONCLUSIONS AND APPLICATIONS

Figure 4a. shows excellent agreement between the finite segment
model and the linear continuum model for small initial displacement angle.
Indeed, the continuum model and the approximate solution of Equation (47)
cannot be considered valid for large displacements. Figures 4a. and 4b.
are thus in a sense a measure of the range of validity of the linear
continuum model. Also, note that for large eo the finite segment model
shows the period to be larger than that predicted by the linear model.

This is consistent with nonlinear pendulum theory [18].

Tables I, II and III show the convergence of the finite-segment model

to the linear coutinuum model for small amplitude oscillations. For the

lowest frequency there is excellent agreement with only five links in the
finite segment model. Moreover, even for the fifth frequency there is

relatively good agreement with as few as ten links.

Finally, the comparison of the finite-segment model results with
experimental results also shows good agreement. This comparison validates
not only the finite-segment model, but also the modelling of the fluid

forces as recorded in References (3] and [17].

These results all suggest that the finite-segment cable model can
nrovide a very effective and efficient model of the nonlinear dynamic
behavior of long heavy cables. Indeed the most appropriate applications

are likely to be with long submerged towing cables, mooring cables, and

hoisting cables.
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